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2D Nanomaterials: Timeline
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2D Nanomaterials: Who are they?

2D Nanomaterials are 2D nanocrystals

Morphologically the are characterized by a lateral size (x, y) and a number of layers (z)




2D Nanomaterials: Who are they?
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2D Nanomaterials: Who are they? °

2D Nanomaterials are a family of different compounds
Depending on the composition they have different names
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2D Nanomaterials: Who are they?

Xenes

7

Xenes are mono elemental 2D materials apart from graphene the name is given by —ene suffix
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2D Nanomaterials: Who are they?

MXenes

Mxenes are 2D metal carbides or nitrides
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2D Nanomaterials: Who are they? °

TMDs
TMDs are bi-elemental 2D materials composed by a transition metal and a chalcogenen (1:2)
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2D Nanomaterials: Who are they?

2D Metal Oxide
Similar to TMDs but with oxygen
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Top-down vs Bottom-up, Physical vs Chemical °

Top-down approaches relies on the controlled fragmentation of the bulk material to form NMs

In bottom-up approaches the NMs are formed from their atomic/molecular precursors
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Chemical approaches foresee a chemical reaction for the 2D-NMs synthesis

Physical approaches there is a change on the morphology but not in the chemical composition (no chemical reaction)



Bottom-up Approaches °

Bottom-up approaches the NMs are formed from their atomic/molecular precursors

Bottom-up Nanomaterials
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Bottom up approaches are genuinely chemical approaches where reagents are converted into NMs

The goal is then to make NMs grow as mush as WE want

General Theory: The NM growth in two steps Nucleation (were cluster are formed) and Growth (were particles grow)
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Bottom-up Approaches

How can we control this process?

Molecules

nucleation

K,, = kinetic constant of the nucleation reaction

Kq = kinetic constant of the growing reaction
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Concentration and Temperature, are the main factors we can control



SolvoThermal °

@® Molecular precursors

[ 2D-NMs
Precursor solution Nucleation 2D-NMs

Solvothermal is a synthetic strategy at high temperature (> 100 °C)

The reaction vessel is first heated at a nucleation temperature (T,)

After seeding, NMs are grown at the growth temperature (T,)

Water can also be used as solvent (Hydrothermal) in that case, high pressure is required so a steel pressure vessel is used
Microwave can be also implied

Solvothermal is an easy strategy to obtain small nanoparticles (<10 nm).



SolvoThermal

Important parameters: S

0—Te
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* Temperature

* Pressure (hydrothermal)
» Reaction time

» Solvent type

fPros

Cons
» Scalable

Preci | of size NP » Expensive autoclave
recise control of size NPs.  Use of organic solvents

* Produce nanocrystal with high crystallinity - Challenging temperature control
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Chemical Reaction
Chemical Vapor Deposition T & °
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NMs are created with this process using relatively simple materials

A thin coating of gaseous reactants flow onto the substrate

The gas reacts when in touch with a heated substrate

Can you suggest alternative ways to heat to start the reaction?

From this reaction 2DNMs are formed

Different kids of CVD apparatus have been developed depending on the chamber pressure and the energy source

Loos, Marcio. Carbon nanotube reinforced composites: CNT Polymer Science and Technology. Elsevier, 2014.



Chemical Vapor Deposition °

https://www.youtube.com/watch?v=VyULskYuGvg

Substrate Fe and Gd (2021)

Chen, Guohai, et al. MRS Bulletin 42.11 (2017): 802-808.
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Chemical Vapor Deposition —,e0 "  °

Important parameters:

» Pressure: lower pressure -> Higher quality, slower process
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polycrystalline Pt foil [33] to 72 um on Cu foil [49]  on sapphire [44]  Cu(111) film/sapphire [43]
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» High control and purity ’ |
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Top Down Strategies

Nanomaterials

Bulk material Exfoliation <>

Top Down approaches rely on the controlled etching of the bulk materials

For those reasons high energies are generally required
Each process is called according to the energy source used.

Controlling the parameters of the process allows the tailor 2D-NMs’ size and morphology

Pros Cons
In general Top-down processes are scalable Wide size of materials are produced
High quantity of material produced Purification step may be complex

Easy protocols Ineffective on small particles
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Bulk material Exfoliation <>
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Liquid Exfoliations °
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Quiz

Is Phosphorene a MXene?

What are the scalable ones?

What are the main technologies to make a film?

How would you make a Xene?

How would you produce Platiun Nanoplatelets?



Purification °

No reaction is 100%, the crude will contain reagents, and byproducts from side reactions
Purification is necessary considering two main factors:

« The quality range needed (e.g., bio grade, technical grade)
« Each purification step will decrease the yield of the reaction

Thus purification protocol is reaction dependent

iHeartCraftyThings.com



Filtration

Principle: NMs are dispersed in an appropriate solvent and collected at the filter while molecules pass through.

Pros Cons
» Ease of preparation + Agglomeration
* Inexpensive * Moderate efficacy

» Scalable




Dyallsg

Dialysis
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Principle: NMs are enclosed in a dialysis bag and are purified by the osmotic effect.

/ Pros
+ Ease of preparation
* Good separation
* Quantitative

\_* MW can be tuned

~

(" Cons

« Works only in water

» Expensive

* High volumes of water

&




@ (i) (i)

Centrifugation

Sampl
Discard “2-3 krpm” “6-75kipm®  “7.5-10 krpm”

“1.5-2 krpm”

i)  sedimentation-based separation or centrifugation (SBS),
i)  sedimentation-based density gradient ultracentrifugation (sDGU),
iii)  isopycnic density gradient ultracentrifugation (iDGU)

( Pros ) (" Cons

« Standard procedure * Moderate efficacy

+ Fast « Agglomeration

« Scalable « High quantities of solvents
. , .

Azakia et al. Advanced Science 2021



What is the best synthetic method for industrial °
applications?

It Depends!



Industrial applications
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Mass production (MP), thickness controllability (THK), temperature
variation (TEMP), uniformity (UNI), material diversity (MAT), crystal quality
(QLTY), morphology (MORPH).

Choi et al. Advanced Science 2022



